Let R be an arbitrary ring with identity and M be a right R-module with S = End(MR). Let f ? S. f is called ?-morphic if M/fn(M) ? ?M(fn) for some positive integer n. A module M is called ?-morphic if every f ? S is ?-morphic. It is proved that M is ?-morphic and image-projective if and only if S is right ?-morphic and M generates its kernel. S is unit-?-regular if and only if M is ?-morphic and ?-Rickart if and only if M is ?-morphic and dual ?-Rickart. M is ?-morphic and image-injective if and only if S is left ?-morphic and M cogenerates its cokernel. © 2013, Hacettepe University. All rights reserved
AbstractLet RP be a projective R-module which is not finitely generated. Let E = EndR(P). This paper...
Abstract. Let R be a ring with an identity (not necessarily commutative) and let M be a left R-modul...
Abstract. Let R be a ring. A right R-module M is called quasi-principally in-jective if it is M-prin...
WOS: 000329081500011Let R be an arbitrary ring with identity and M be a right R-module with S = End(...
Abstract. Let R be a ring. A right R-module M is called quasi-principally (or semi-) injective if it...
Let $R$ be a commutative ring, $M$ an $R$-module and $\varphi_a$ be the endomorphism of $M$ given by...
free right R-module, over an infinite set C, with endomorphism ring H. In this note we first study t...
Any left R-module M is said to be p-injective if for every principal left ideal I of R and any R-hom...
Let M be a left module over a ring R. Then M can be regarded as a right C-module, where C=End(RM) is...
summary:Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \to ...
A ring R is called a right WV-ring if each simple right R-module is injective relative to proper cyc...
Abstract. A ringR is called left morphic ifR/Ra ∼ = l(a) for every a ∈ R. Equivalently, for every a ...
AbstractThis is a continuation of recent work on the morphic property of rings. The main objective o...
We introduce a symmetry property for unit-regular rings as follows: $a\in R$ is unit-regular if and ...
A given R-module is called a right np-injective module if for any non-nilpotent element ...
AbstractLet RP be a projective R-module which is not finitely generated. Let E = EndR(P). This paper...
Abstract. Let R be a ring with an identity (not necessarily commutative) and let M be a left R-modul...
Abstract. Let R be a ring. A right R-module M is called quasi-principally in-jective if it is M-prin...
WOS: 000329081500011Let R be an arbitrary ring with identity and M be a right R-module with S = End(...
Abstract. Let R be a ring. A right R-module M is called quasi-principally (or semi-) injective if it...
Let $R$ be a commutative ring, $M$ an $R$-module and $\varphi_a$ be the endomorphism of $M$ given by...
free right R-module, over an infinite set C, with endomorphism ring H. In this note we first study t...
Any left R-module M is said to be p-injective if for every principal left ideal I of R and any R-hom...
Let M be a left module over a ring R. Then M can be regarded as a right C-module, where C=End(RM) is...
summary:Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \to ...
A ring R is called a right WV-ring if each simple right R-module is injective relative to proper cyc...
Abstract. A ringR is called left morphic ifR/Ra ∼ = l(a) for every a ∈ R. Equivalently, for every a ...
AbstractThis is a continuation of recent work on the morphic property of rings. The main objective o...
We introduce a symmetry property for unit-regular rings as follows: $a\in R$ is unit-regular if and ...
A given R-module is called a right np-injective module if for any non-nilpotent element ...
AbstractLet RP be a projective R-module which is not finitely generated. Let E = EndR(P). This paper...
Abstract. Let R be a ring with an identity (not necessarily commutative) and let M be a left R-modul...
Abstract. Let R be a ring. A right R-module M is called quasi-principally in-jective if it is M-prin...