Metaheuristics have been showing interesting results in solving hard optimization problems. However, they become limited in terms of effectiveness and runtime for high dimensional problems. Thanks to the independency of metaheuristics components, parallel computing appears as an attractive choice to reduce the execution time and to improve solution quality. By exploiting the increasing performance and programability of graphics processing units (GPUs) to this aim, GPU-based parallel metaheuristics have been implemented using different designs. RecentresultsinthisareashowthatGPUstendtobeeffectiveco-processors forleveraging complex optimization problems.In thissurvey, mechanisms involvedinGPUprogrammingforimplementingparallelmetaheuristicsare pr...