International audienceThere is both observational and theoretical evidence that the ejecta of core-collapse supernovae (SNe) are structured. Rather than being smooth and homogeneous, the material is made of over-dense and under-dense regions of distinct composition. Here, we have explored the effect of clumping on the SN radiation during the photospheric phase using 1D non-local thermodynamic equilibrium radiative transfer and an ejecta model arising from a blue-supergiant explosion (yielding a Type II-peculiar SN). Neglecting chemical segregation, we adopted a velocity-dependent volume-filling factor approach that assumes that the clumps are small but does not change the column density along any sightline. We find that clumping boosts the ...