This paper examines repeated implementation of a social choice function (SCF) with infinitely-lived agents whose preferences are determined randomly in each period. An SCF is repeated-implementable in (Bayesian) Nash equilibrium if there exists a sequence of (possibly history-dependent) mechanisms such that (i) its equilibrium set is non-empty and (ii) every equilibrium outcome corresponds to the desired social choice at every possible history of past play and realizations of uncer- tainty. We first show, with minor qualifications, that in the complete information environment an SCF is repeated-implementable if and only if it is effcient. We then extend this result to the incomplete information setup. In particular, it is shown that in this...