We consider trace automata. Their vertices are Mazurkiewicz traces and they accept finite words. Considering the length of a trace as the length of its Foata normal form, we define the operations of level-length synchronization and of superposition of trace automata. We show that if a family F of trace automata is closed under these operations, then for any deterministic automaton H in F, the word languages accepted by the deterministic automata of F that are length-reducible to H form a Boolean algebra. We show that the family of trace suffix automata with level-regular contexts and the subfamily of vector addition systems satisfy these closure properties. In particular, this yields various Boolean algebras of word languages accepted by de...