Asymptotically tight lower bounds are derived for the I/O complexity of a general class of hybrid algorithms computing the product of n x n square matrices combining "Strassen-like" fast matrix multiplication approach with computational complexity Theta(n^{log_2 7}), and "standard" matrix multiplication algorithms with computational complexity Omega (n^3). We present a novel and tight Omega ((n/max{sqrt M, n_0})^{log_2 7}(max{1,(n_0)/M})^3M) lower bound for the I/O complexity of a class of "uniform, non-stationary" hybrid algorithms when executed in a two-level storage hierarchy with M words of fast memory, where n_0 denotes the threshold size of sub-problems which are computed using standard algorithms with algebraic complexity Omega (n^3)...