Any B-tree has height at least ceil[log_B(n)]. Static B-trees achieving this height are easy to build. In the dynamic case, however, standard B-tree rebalancing algorithms only maintain a height within a constant factor of this optimum. We investigate exactly how close to ceil[log_B(n)] the height of dynamic B-trees can be maintained as a function of the rebalancing cost. In this paper, we prove a lower bound on the cost of maintaining optimal height ceil[log_B(n)], which shows that this cost must increase from Omega(1/B) to Omega(n/B) rebalancing per update as n grows from one power of B to the next. We also provide an almost matching upper bound, demonstrating this lower bound to be essentially tight. We then give a variant upper bound wh...