Abstract. In this paper we present a framework for the cooperation of symbolic and propagation-based numerical solvers over the real numbers. This cooperation is expressed in terms of xed points of closure operators over a complete lattice of constraint systems. In a second part we instantiate this framework to a particular cooperation scheme, where propagation is associated to pruning operators implementing interval algorithms enclosing the possible solutions of constraint systems, whereas symbolic methods are mainly devoted to generate redundant constraints. When carefully chosen,itiswell known that the addition of redundant constraint drastically improve the performances of systems based on local consistency (e.g. Prolog IV or Newton). W...
AbstractThe integration of the constraint solving paradigm in programming languages raises a number ...
This paper describes our experience with a simple modeling and programming approach for increasing t...
An approach for semiquantitative constraint propagation using both simple and complex nodes is prese...
This paper discusses the processing of non-linear polynomial systems using a branch and prune algori...
Interval constraints can be used to solve problems in numerical analysis. In this paper we show that...
A reliable symbolic-numeric algorithm for solving nonlinear systems over the reals is designed. The ...
In this paper we investigate the use of a system of multivariate polynomials to represent the restri...
Building tight and conservative enclosures of the solution set is of crucial importance in the desig...
. Propagation based finite domain solvers provide a general mechanism for solving combinatorial prob...
A. NEUMAIER [1] has given the fundamentals of interval analysis on directed acyclic graphs (DAGs) fo...
In this paper we investigate the use of a system of multivariate polynomials to represent the restri...
Numerical constraint systems are often handled by branch and prune algorithms that combine splitting...
This paper proposes a novel generic scheme enabling the combination of multiple inclusion representa...
AbstractIn the context of constraint logic programming and theorem proving, the development of const...
In \cite{BockmayrWeispfenning01}, we give an overview of solving numerical constraints in the contex...
AbstractThe integration of the constraint solving paradigm in programming languages raises a number ...
This paper describes our experience with a simple modeling and programming approach for increasing t...
An approach for semiquantitative constraint propagation using both simple and complex nodes is prese...
This paper discusses the processing of non-linear polynomial systems using a branch and prune algori...
Interval constraints can be used to solve problems in numerical analysis. In this paper we show that...
A reliable symbolic-numeric algorithm for solving nonlinear systems over the reals is designed. The ...
In this paper we investigate the use of a system of multivariate polynomials to represent the restri...
Building tight and conservative enclosures of the solution set is of crucial importance in the desig...
. Propagation based finite domain solvers provide a general mechanism for solving combinatorial prob...
A. NEUMAIER [1] has given the fundamentals of interval analysis on directed acyclic graphs (DAGs) fo...
In this paper we investigate the use of a system of multivariate polynomials to represent the restri...
Numerical constraint systems are often handled by branch and prune algorithms that combine splitting...
This paper proposes a novel generic scheme enabling the combination of multiple inclusion representa...
AbstractIn the context of constraint logic programming and theorem proving, the development of const...
In \cite{BockmayrWeispfenning01}, we give an overview of solving numerical constraints in the contex...
AbstractThe integration of the constraint solving paradigm in programming languages raises a number ...
This paper describes our experience with a simple modeling and programming approach for increasing t...
An approach for semiquantitative constraint propagation using both simple and complex nodes is prese...