Abstract. We investigate two associative products over the ring of symmetric functions related to the intransitive and Cartesian products of permutation groups. As an application, we give an enumeration of some Feynman type diagrams arising in Bender’s QFT (quantum field theory) of partitions. We end by exploring possibilities to construct noncommutative analogues. Résumé. Nous étudions deux lois produits associatives sur les fonctions symétriques correspondant aux produits intransitif et cartésien des groupes de permutations. Nous donnons comme application l’énumération de certains diagrammes de Feynman apparaissant dans la QFT (théorie quantique des champs) des partitions de Bender. Enfin, nous donnons quelques pistes possibles pour const...
AbstractWe introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labele...
AbstractWe define a new action of the symmetric group and its Hecke algebra on polynomial rings whos...
We study the consequences of twisting the coalgebra structure of Poincare ́ group in a quantum field...
Submitted 28.11.04We examine two associative products over the ring of symmetric functions related t...
Nous montrons comment la théorie des fonctions symétriques non commutatives permet de rendre compte ...
Abstract: We explore some general consequences of a consistent formulation of relativistic quantum f...
The ring of symmetric functions carries the structure of a Hopf algebra. When computing ...
This paper discusses various deformations of free associative algebras and of their convolution alge...
34 pages; LaTEXInternational audienceWe introduce analogs of the Hopf algebra of Free quasi-symmetri...
. Starting from known q-analogues of ordinary SU(n) tensor products multiplicities, we introduce q-a...
Abstract. Associated to a finite graph X is its quantum automorphism group G(X). We prove a formula ...
Infinite-dimensional algebras and symmetric functions arise in many diverse areas of mathematics and...
[in "Special Issue : Lie Computations", G. Jacob, V. Koseleff, Eds.]International audienceThis paper...
Dans cette thèse, on étudie les propriétés combinatoires, algébriques et analytiques de certains gro...
In this thesis, we study the combinatorial and operator algebraic properties of certain free compact...
AbstractWe introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labele...
AbstractWe define a new action of the symmetric group and its Hecke algebra on polynomial rings whos...
We study the consequences of twisting the coalgebra structure of Poincare ́ group in a quantum field...
Submitted 28.11.04We examine two associative products over the ring of symmetric functions related t...
Nous montrons comment la théorie des fonctions symétriques non commutatives permet de rendre compte ...
Abstract: We explore some general consequences of a consistent formulation of relativistic quantum f...
The ring of symmetric functions carries the structure of a Hopf algebra. When computing ...
This paper discusses various deformations of free associative algebras and of their convolution alge...
34 pages; LaTEXInternational audienceWe introduce analogs of the Hopf algebra of Free quasi-symmetri...
. Starting from known q-analogues of ordinary SU(n) tensor products multiplicities, we introduce q-a...
Abstract. Associated to a finite graph X is its quantum automorphism group G(X). We prove a formula ...
Infinite-dimensional algebras and symmetric functions arise in many diverse areas of mathematics and...
[in "Special Issue : Lie Computations", G. Jacob, V. Koseleff, Eds.]International audienceThis paper...
Dans cette thèse, on étudie les propriétés combinatoires, algébriques et analytiques de certains gro...
In this thesis, we study the combinatorial and operator algebraic properties of certain free compact...
AbstractWe introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labele...
AbstractWe define a new action of the symmetric group and its Hecke algebra on polynomial rings whos...
We study the consequences of twisting the coalgebra structure of Poincare ́ group in a quantum field...