In this paper we investigate the relationship between the continuous and the discontinuous Galerkin methods for elliptic problems. In particular, we show that the continuous Galerkin method can be interpreted as the limit of a discontinuous Galerkin method when a stabilization parameter tends to infinity. Based on this observation we derive a method for computing a conservative approximation of the flux on the the boundary of each element for the continuous Galerkin method. The conservative flux is then obtained by actually computing the limit of the natural conservative flux provided by the discontinuous Galerkin method. We prove existence, uniqueness, and optimal order error estimates. Finally, we illustrate our results by a few ...
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in ...
In this paper we present in a unified setting the continuous and discontinuous Galerkin methods for ...
We prove in an abstract setting that standard (continuous) Galerkin finite element approximations ar...
In this paper we analyze a discontinuous finite element method recently introduced by Bassi and Reba...
In this paper we analyze a discontinuous finite element method recently introduced by Bassi and Reba...
Abstract. The standard continuous Galerkin (CG) finite element method for second order el-liptic pro...
We consider a finite element method which couples the continuous Galerkin method away from internal ...
In the hyperbolic community, discontinuous Galerkin (DG) approaches are mainly applied when finite el...
In the hyperbolic community, discontinuous Galerkin (DG) approaches are mainly applied when finite el...
We consider a finite element method which couples the continuous Galerkin method away from internal ...
We consider a finite element method which couples the continuous Galerkin method away from internal ...
Abstract. The embedded discontinuous Galerkin methods are obtained from hybridizable dis-continuous ...
We consider a finite element method which couples the continuous Galerkin method away from internal ...
© 2017 Society for Industrial and Applied Mathematics. We derive a high order globally continuous an...
Abstract. We prove in an abstract setting that standard (continuous) Galerkin finite element approxi...
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in ...
In this paper we present in a unified setting the continuous and discontinuous Galerkin methods for ...
We prove in an abstract setting that standard (continuous) Galerkin finite element approximations ar...
In this paper we analyze a discontinuous finite element method recently introduced by Bassi and Reba...
In this paper we analyze a discontinuous finite element method recently introduced by Bassi and Reba...
Abstract. The standard continuous Galerkin (CG) finite element method for second order el-liptic pro...
We consider a finite element method which couples the continuous Galerkin method away from internal ...
In the hyperbolic community, discontinuous Galerkin (DG) approaches are mainly applied when finite el...
In the hyperbolic community, discontinuous Galerkin (DG) approaches are mainly applied when finite el...
We consider a finite element method which couples the continuous Galerkin method away from internal ...
We consider a finite element method which couples the continuous Galerkin method away from internal ...
Abstract. The embedded discontinuous Galerkin methods are obtained from hybridizable dis-continuous ...
We consider a finite element method which couples the continuous Galerkin method away from internal ...
© 2017 Society for Industrial and Applied Mathematics. We derive a high order globally continuous an...
Abstract. We prove in an abstract setting that standard (continuous) Galerkin finite element approxi...
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in ...
In this paper we present in a unified setting the continuous and discontinuous Galerkin methods for ...
We prove in an abstract setting that standard (continuous) Galerkin finite element approximations ar...