A family of finite difference schemes for the acoustic wave equation in heterogeneous media is introduced. The precision and computational cost are analyzed in two cases. First, a two layered medium is considered. The order of convergence at the interface is derived for each scheme. Given an a priori accuracy on the solution, the computational cost is studied as a function of the order of accuracy of the finite difference scheme. It is demonstrated that this function has a minimum. The previous results are extended to the case of random media by a numerical study. Similar conclusions about precision and cost are found. Key Words. Wave Equation, Heterogeneous Media, Numerical Schemes, Computational Cost AMS(MOS) subject classifications. 65...
Abstract. A fully discrete a priori analysis of the finite element heterogenenous multiscale method ...
A finite element heterogeneous multiscale method (FE-HMM) is proposed for the wave equation with hig...
Wave propagation problems can be modeled by partial differential equations. In this thesis, we study...
A family of finite difference schemes for the acoustic wave equation in heterogeneous media is intro...
A systematic comparison is carried out between some standard finite difference schemes, regarding th...
A systematic comparison is carried out between some standard finite difference schemes, regarding th...
The numerical error associated with finite-difference simulation of wave propagation in discontinuou...
Least square inversion methods require wave propagation modeling by linear equations. It is in model...
A family of numerical schemes, based on finite difference operators is introduced for the computatio...
This thesis discusses properties arising when finite differences are implemented forsolving the two ...
The error of numerical schemes in heterogeneous media is difficult to analyse. In this paper, we der...
The governing equations of the acoustic problem are the compressible Euler equations. The discretiza...
Thesis (Ph.D.)--University of Washington, 2015Finite Difference (FD) schemes have been used widely i...
International audienceWe consider the wave equation in acoustic media and evaluate the performance o...
new family of finite-difference schemes to solve the heterogeneous acoustic wave equatio
Abstract. A fully discrete a priori analysis of the finite element heterogenenous multiscale method ...
A finite element heterogeneous multiscale method (FE-HMM) is proposed for the wave equation with hig...
Wave propagation problems can be modeled by partial differential equations. In this thesis, we study...
A family of finite difference schemes for the acoustic wave equation in heterogeneous media is intro...
A systematic comparison is carried out between some standard finite difference schemes, regarding th...
A systematic comparison is carried out between some standard finite difference schemes, regarding th...
The numerical error associated with finite-difference simulation of wave propagation in discontinuou...
Least square inversion methods require wave propagation modeling by linear equations. It is in model...
A family of numerical schemes, based on finite difference operators is introduced for the computatio...
This thesis discusses properties arising when finite differences are implemented forsolving the two ...
The error of numerical schemes in heterogeneous media is difficult to analyse. In this paper, we der...
The governing equations of the acoustic problem are the compressible Euler equations. The discretiza...
Thesis (Ph.D.)--University of Washington, 2015Finite Difference (FD) schemes have been used widely i...
International audienceWe consider the wave equation in acoustic media and evaluate the performance o...
new family of finite-difference schemes to solve the heterogeneous acoustic wave equatio
Abstract. A fully discrete a priori analysis of the finite element heterogenenous multiscale method ...
A finite element heterogeneous multiscale method (FE-HMM) is proposed for the wave equation with hig...
Wave propagation problems can be modeled by partial differential equations. In this thesis, we study...