This paper is included in a series aiming to contribute to the algebraic theory of distributed computation. The key problem in understanding Multi-Agent Systems is to find a theory which integrates the reactive part and the control part of such systems. To this end we use the calculus of flownomials. It is a polynomial-like calculus for representing flowgraphs and their behaviours. An `additive' interpretation of the calculus was intensively developed to study control flowcharts and finite automata. For instance, regular algebra and iteration theories are included in a unified presentation. On the other hand, a `multiplicative' interpretation of the calculus of flownomials was developed to study dataflow networks. The claim of thi...