. The Neumann-Neumann algorithm is known to be an efficient domain decomposition preconditioner with unstructured subdomains for iterative solution of finite element discretizations of difficult problems with strongly discontinuous coefficients [6]. However, this algorithm suffers from the need to solve in each iteration an inconsistent singular problem for every subdomain, and its convergence deteriorates with increasing number of subdomains due to the lack of a coarse problem to propagate the error globally. We show that the equilibrium conditions for the singular problems on subdomains lead to a simple and natural construction of a coarse problem. The construction is purely algebraic and applies also to systems, such as those that arize ...
In this article we address the question of efficiently solving the algebraic linear system of equati...
. Domain decomposition methods are highly parallel methods for solving elliptic partial differential...
Discretization of a self-adjoint elliptic partial differential equation by finite differences or fin...
The iterative Domain Decomposition Method (DDM) is one of the most effective parallel algorithm for ...
AbstractThe idea of solving large problems using domain decomposition technique appears particularly...
. The rate of convergence of the Balancing Domain Decomposition method applied to the mixed finite e...
The balancing Neumann-Neumann (BNN) and the additive coarse grid correction (BPS) preconditioner are...
This paper deals with the problem of solving e#ciently the algebraic system arising in mortar mixed ...
Projet MENUSINThe idea of solving large problems using domain decomposition techniques appears parti...
Abstract. The balancing Neumann-Neumann (BNN) and the additive coarse grid correction (BPS) precondi...
In this paper we present two-level overlapping domain decomposition preconditioners for the finite-...
The Boundary Element Method (BEM) requires only a surface mesh to solve elasticity problems; however...
The domain decomposition strategies proposed in this thesis are efficient preconditioning techniques...
summary:We generalize the overlapping Schwarz domain decomposition method to problems of linear elas...
Balancing Neumann-Neumann methods are extented to mixed formulations of the linear elasticity system...
In this article we address the question of efficiently solving the algebraic linear system of equati...
. Domain decomposition methods are highly parallel methods for solving elliptic partial differential...
Discretization of a self-adjoint elliptic partial differential equation by finite differences or fin...
The iterative Domain Decomposition Method (DDM) is one of the most effective parallel algorithm for ...
AbstractThe idea of solving large problems using domain decomposition technique appears particularly...
. The rate of convergence of the Balancing Domain Decomposition method applied to the mixed finite e...
The balancing Neumann-Neumann (BNN) and the additive coarse grid correction (BPS) preconditioner are...
This paper deals with the problem of solving e#ciently the algebraic system arising in mortar mixed ...
Projet MENUSINThe idea of solving large problems using domain decomposition techniques appears parti...
Abstract. The balancing Neumann-Neumann (BNN) and the additive coarse grid correction (BPS) precondi...
In this paper we present two-level overlapping domain decomposition preconditioners for the finite-...
The Boundary Element Method (BEM) requires only a surface mesh to solve elasticity problems; however...
The domain decomposition strategies proposed in this thesis are efficient preconditioning techniques...
summary:We generalize the overlapping Schwarz domain decomposition method to problems of linear elas...
Balancing Neumann-Neumann methods are extented to mixed formulations of the linear elasticity system...
In this article we address the question of efficiently solving the algebraic linear system of equati...
. Domain decomposition methods are highly parallel methods for solving elliptic partial differential...
Discretization of a self-adjoint elliptic partial differential equation by finite differences or fin...