We present the first shared-memory algorithms for k-exclusion in which all process blocking is achieved through the use of "local-spin" busy waiting. Such algorithms are designed to reduce interconnect traffic, which is important for good performance. Our k-exclusion algorithms are starvation-free, and are designed to be fast in the absence of contention, and to exhibit scalable performance as contention rises. In contrast, all previous starvation-free k-exclusion algorithms require unrealistic operations or generate excessive interconnect traffic under contention. We also show that efficient, starvation-free k-exclusion algorithms can be used to reduce the time and space overhead associated with existing wait-free shared object ...