SystemML aims at declarative, large-scale machine learning (ML) on top of MapReduce, where high-level ML scripts with R-like syntax are compiled to programs of MR jobs. The declarative specification of ML algorithms enables—in contrast to existing large-scale machine learning libraries— automatic optimization. SystemML’s primary focus is on data parallelism but many ML algorithms inherently exhibit opportunities for task parallelism as well. A major challenge is how to efficiently combine both types of parallelism for arbitrary ML scripts and workloads. In this paper, we present a systematic approach for combining task and data parallelism for large-scale machine learning on top of MapReduce. We employ a generic Parallel FOR construct (ParF...