Many existing methods of statistical inference and analysis rely heavily on the assumption that the data are normally distributed. However, the normality assumption is not fulfilled when dealing with data which does not contain negative values or are otherwise skewed – a common occurrence in diverse disciplines such as finance, economics, political science, sociology, philology, biology and physical and industrial processes. In this situation, a lognormal distribution may better represent the data than the normal distribution. In this paper, I re-visit the key attributes of the normal and lognormal distributions, and demonstrate through an empirical analysis of the ‘number of political parties\u27 in India, how logarithmic transformatio...