Propensity score methods are a part of the standard toolkit for applied researchers who wish to ascertain causaleffects from observational data. While they were originally developed for binary treatments, several researchershave proposed generalizations of the propensity score methodology for non-binary treatment regimes. Suchextensions have widened the applicability of propensity score methods and are indeed becoming increasinglypopular themselves. In this article, we closely examine two methods that generalize propensity scores in thisdirection, namely, the propensity function (pf), and the generalized propensity score (gps), along with twoextensions of thegpsthat aim to improve its robustness. We compare the assumptions, theoretical prop...