Despite the remarkable optoelectronic properties of halide perovskites, achieving reproducible field effect transistor (FET) action in polycrystalline films at room temperature has been challenging and represents a fundamental bottleneck for understanding electronic charge transport in these materials. In this work, we report halide perovskite-based FET operation at room temperature with negligible hysteresis. Extensive measurements and device modeling reveal that incorporating high-k dielectrics enables modulation of the channel conductance. Furthermore, continuous bias cycling or resting allows dynamical reconfiguration of the FETs between p-type behavior and ambipolar FET with balanced electron and hole transport and an ON/OFF ratio up t...