The evolution of the oceanic free-surface is responsible for the propagation of fast surface gravity waves, which approximatively propagate at speed root gH (with g the gravity and H the local water depth). In the deep ocean, this phase speed is roughly two orders of magnitude faster than the fastest internal gravity waves. The very strong stability constraint imposed by those fast surface waves on the time-step of numerical models is handled using a mode splitting between slow (internal/baroclinic) and fast (external/barotropic) motions to allow the possibility to adopt specific numerical treatments in each component. The barotropic mode is traditionally approximated by the vertically integrated flow because it has only slight vertical var...