Many classical finite elements such as the Argyris and Bell elements have long been absent from high-level PDE software. Building on recent theoretical work, we describe how to implement very general finite-element transformations in FInAT and hence into the Firedrake finite-element system. Numerical results evaluate the new elements, comparing them to existing methods for classical problems. For a second-order model problem, we find that new elements give smooth solutions at a mild increase in cost over standard Lagrange elements. For fourth-order problems, however, the newly enabled methods significantly outperform interior penalty formulations. We also give some advanced use cases, solving the nonlinear Cahn-Hilliard equation and some bi...