This master thesis tackles the problem of unsupervised learning of useful and interpretable representations from image data using deep Convolutional Neural Networks (CNN). Recent years have seen remarkable success from using deep learning technologies to tackle computer vision problems. This success is in part attributable to the availability of large, manually-annotated datasets; however, most image data is unlabelled and unstructured. It would therefore be beneficial to reduce the dependency on labelled datasets by training networks in an unsupervised manner. Ideally, we would like the extracted representations from such networks to be useful for a range of downstream machine learning tasks. Furthermore, we would like the learned represen...