The security of embedded systems can be dramatically improved through the use of formally verified isolation mechanisms such as separation kernels, hypervisors, or microkernels. For trustworthiness, particularly for system-level behavior, the verifications need precise models of the underlying hardware. Such models are hard to attain, highly complex, and proofs of their security properties may not easily apply to similar but different platforms. This may render verification economically infeasible. To address these issues, we propose a compositional top-down approach to embedded system specification and verification, where the system-on-chip is modeled as a network of distributed automata communicating via paired synchronous message passing...