The volume of fluid (VOF) method is widely used to simulate the flow of immiscible fluids. It uses a discrete and sharp volume fractions field to represent the fluid-fluid interface on a Eulerian grid. The most challenging part of the VOF method is the accurate computation of the local interface curvature which is essential for evaluation of the surface tension force at the interface. In this paper, a machine learning approach is used to develop a model which predicts the local interface curvature from neighbouring volume fractions. A novel data generation methodology is devised which generates well-balanced randomized data sets comprising of spherical interface patches of different configurations/orientations. A two-layer feed-forward neur...