Controlling macrophage behavior has become a high-potential target strategy for regenerative therapies, such as in situ tissue engineering (TE). In situ TE is an approach, in which acellular resorbable synthetic scaffolds are used, to induce endogenous tissue regeneration. However, little is known regarding the effect of the biomechanical environment on the macrophage response to a scaffold. Therefore, the aim of this study was to assess the effect of cyclic strains (0%, 8%, and 14% strain) on primary human macrophage polarization in electrospun scaffolds with two different fiber diameters in the micrometer range (4 μm or 13 μm). High strains led to a proinflammatory profile in terms of gene expression, expression of surface proteins, and c...