In recent years, there have been attempts to test the theory of market efficiency, using more efficient and accurate models to predict changes in the prices of various financial instruments. Actually there are two ways to predict such variations: parametric and nonparametric models. In the first group there are various statistical-econometric models, while in the second there are artificial intelligence techniques as neural networks and genetic algorithms. The use of neural networks for predicting the behaviour of economic variables has increased greatly in recent years. This paper describes the design of solutions to forecast the share price of Telecom Argentina SA, which is listed on the Stock Exchange of Buenos Aires, in the period 2005-...
El objetivo perseguido en el presente trabajo lo constituye la modelización y predicción de series t...
Este artículo presenta un análisis de aplicación del denominado “análisis fundamental” basado en la ...
The study considered evaluating the predictive capacity of the mean reversion models, accrual adjust...
When investors decide to venture into stock markets they search for a method that provides reliabili...
El objetivo del presente estudio radica en construir algunos modelos estadísticos, econométricos y ...
As opposed to the weak form of efficient-market hypothesis, the current study shows that it is possi...
In this work, we propose the use of Artificial Neural Networks (ANNs), with theobjective of predicti...
The implementation of trading strategies through computational tools and artificial intelligence, su...
Tanto para los inversionistas como para las autoridades económicas es necesario que se desarrolle un...
This paper contains a financial forecast using Artificial Neural Networks. The analysis used the tra...
ResumenEn este trabajo se utiliza una red neuronal diferencial (RND) para describir las series de va...
This paper shows a Neuro-Fuzzy methodology which is applied to the financial problem of stock market...
RESUMEN: En este trabajo se predice el comportamiento del precio del oro mediante un modelo basado e...
The primary objective of this paper is to show the methodology assessment to construct artificial st...
Se comparan especificaciones lineales y no lineales (estas últimas expresadas en redes neuronales ar...
El objetivo perseguido en el presente trabajo lo constituye la modelización y predicción de series t...
Este artículo presenta un análisis de aplicación del denominado “análisis fundamental” basado en la ...
The study considered evaluating the predictive capacity of the mean reversion models, accrual adjust...
When investors decide to venture into stock markets they search for a method that provides reliabili...
El objetivo del presente estudio radica en construir algunos modelos estadísticos, econométricos y ...
As opposed to the weak form of efficient-market hypothesis, the current study shows that it is possi...
In this work, we propose the use of Artificial Neural Networks (ANNs), with theobjective of predicti...
The implementation of trading strategies through computational tools and artificial intelligence, su...
Tanto para los inversionistas como para las autoridades económicas es necesario que se desarrolle un...
This paper contains a financial forecast using Artificial Neural Networks. The analysis used the tra...
ResumenEn este trabajo se utiliza una red neuronal diferencial (RND) para describir las series de va...
This paper shows a Neuro-Fuzzy methodology which is applied to the financial problem of stock market...
RESUMEN: En este trabajo se predice el comportamiento del precio del oro mediante un modelo basado e...
The primary objective of this paper is to show the methodology assessment to construct artificial st...
Se comparan especificaciones lineales y no lineales (estas últimas expresadas en redes neuronales ar...
El objetivo perseguido en el presente trabajo lo constituye la modelización y predicción de series t...
Este artículo presenta un análisis de aplicación del denominado “análisis fundamental” basado en la ...
The study considered evaluating the predictive capacity of the mean reversion models, accrual adjust...