Research on autonomous cars, early intensified in the 1990s, is becoming one of the main research paths in automotive industry. Recent works use Rapidly-exploring Random Trees to explore the state space along a given reference path, and to compute the minimum time collision-free path in real time. Those methods do not require good approximations of the reference path, they are able to cope with discontinuous routes, they are capable of navigating in realistic traffic scenarios, and they derive their power from an extensive computational effort directed to improve the quality of the trajectory from step to step. In this paper, we focus on re-engineering an existing state-of-the-art sequential algorithm to obtain a CUDA-based GPGPU (General P...