We consider two new online bin packing problems, the online Variable Cost and Size Bin Packing Problem (o-VCSBPP) and the online Generalized Bin Packing Problem (o-GBPP). We take two well-known bin packing algorithms to address them, the First Fit (FF) and the Best Fit (BF). We show that both algorithms have an asymptotic worst-case ratio bound equal to 2 for the o-VCSBPP and this bound is tight. When there are enough bins of a particular type to load all items, FF and BF also have an absolute worst-case ratio bound equal to 2 for the o-VCSBPP, and this bound is also tight. In addition, we prove that no worst-case ratio bound of FF and BF can be computed for the o-GBPP. Therefore, we consider a natural evolution of these algorithms, the Fir...