The invasive capability is fundamental in determining the malignancy of a solid tumor. Revealing biomedical strategies that are able to partially decrease cancer invasiveness is therefore an important approach in the treatment of the disease and has given rise to multiple in vitro and in silico models. We here develop a hybrid computational framework, whose aim is to characterize the effects of the different cellular and subcellular mechanisms involved in the invasion of a malignant mass. In particular, a discrete Cellular Potts Model is used to represent the population of cancer cells at the mesoscopic scale, while a continuous approach of reaction-diffusion equations is employed to describe the evolution of microscopic variables, as the n...