En imagerie numérique, les approches «problèmes inverses» régularisées reconstruisent une information d'intérêt à partir de mesures et d'un modèle de formation d'image. Le problème d'inversion étant mal posé, mal conditionné et le modèle de formation d'image utilisé peu contraint, il est nécessaire d'introduire des a priori afin de restreindre l'ambiguïté de l'inversion. Ceci permet de guider la reconstruction vers une solution satisfaisante. Les travaux de cette thèse ont porté sur le développement d'algorithmes de reconstruction d'hologrammes numériques, basés sur des méthodes d'optimisation en grande dimension (lisse ou non-lisse). Ce cadre général a permis de proposer différentes approches adaptées aux problématiques posées par cette te...