Let G be an undirected graph with maximum degree at most 3 such that G does not contain either of the two graphs shown in Figure 1 as a subgraph. We prove that the independence number of G is at least n(G)/3 + nt(G)/63, where n(G) is the number of vertices in G and nt(G) is the number of nontriangle vertices in G. We show an application of the aforementioned combinatorial result to the area of parameterized complexity. We present a linear-time kernelization algorithm for the independent set problem on graphs with maximum degree at most 3 that computes a kernel of size at most 630k/211 \u3c 3k, where k is the lower bound on the size of the independent set sought
By Brook\u27s Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number a...
AbstractIn this paper we propose an O(1.0892n) algorithm solving the Maximum Independent Set problem...
We show that the number of maximal independent sets of size exactly k in any graph of size n is ...
We prove that a K4-free graph G of order n, size m and maximum degree at most three has an independe...
We prove that a K4-free graph G of order n, size m and maximum degree at most three has an independe...
AbstractWe prove that a K4-free graph G of order n, size m and maximum degree at most three has an i...
We prove that a K4-free graph G of order n, size m and maximum degree at most three has an independe...
AbstractWei discovered that the independence number of a graph G is at least Σv(1 + d(v))−1. It is p...
AbstractStaton proved that every triangle-free graph on n vertices with maximum degree 3 has an inde...
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree ...
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree ...
AbstractIn 1979, Staton proved that every triangle-free graph G with maximum degree at most three ha...
We show that Maximum Independent Set on connected graphs of average degree at most three can be solv...
AbstractLet α∗ denote the maximum number of independent vertices all of which have the same degree. ...
AbstractWei discovered that the independence number of a graph G is at least Σv(1 + d(v))−1. It is p...
By Brook\u27s Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number a...
AbstractIn this paper we propose an O(1.0892n) algorithm solving the Maximum Independent Set problem...
We show that the number of maximal independent sets of size exactly k in any graph of size n is ...
We prove that a K4-free graph G of order n, size m and maximum degree at most three has an independe...
We prove that a K4-free graph G of order n, size m and maximum degree at most three has an independe...
AbstractWe prove that a K4-free graph G of order n, size m and maximum degree at most three has an i...
We prove that a K4-free graph G of order n, size m and maximum degree at most three has an independe...
AbstractWei discovered that the independence number of a graph G is at least Σv(1 + d(v))−1. It is p...
AbstractStaton proved that every triangle-free graph on n vertices with maximum degree 3 has an inde...
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree ...
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree ...
AbstractIn 1979, Staton proved that every triangle-free graph G with maximum degree at most three ha...
We show that Maximum Independent Set on connected graphs of average degree at most three can be solv...
AbstractLet α∗ denote the maximum number of independent vertices all of which have the same degree. ...
AbstractWei discovered that the independence number of a graph G is at least Σv(1 + d(v))−1. It is p...
By Brook\u27s Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number a...
AbstractIn this paper we propose an O(1.0892n) algorithm solving the Maximum Independent Set problem...
We show that the number of maximal independent sets of size exactly k in any graph of size n is ...