Deep learning a large scalable network architecture based on neural network. It is currently an extremely active research area in machine learning and pattern recognition society. They have diverse uses including pattern recognition, signal processing, image processing, image compression, classification of remote sensing data, and big data processing. Interest in specialized architectures for accelerating deep learning networks has increased significantly because of their ability to reduce power, increase performance, and allow fault tolerant computing. Specialized neuromorphic architectures could provide high performance at extreme low powers for these applications. This thesis concentrates on the implementation of multi-core neuromorphic ...