Which groups G contain difference sets with the parameters (v, k, λ)= (q3 + 2q2 , q2 + q, q), where q is a power of a prime p? Constructions of K. Takeuchi, R.L. McFarland, and J.F. Dillon together yield difference sets with these parameters if G contains an elementary abelian group of order q2 in its center. A result of R.J. Turyn implies that if G is abelian and p is self-conjugate modulo the exponent of G, then a necessary condition for existence is that the exponent of the Sylow p-subgroup of G be at most 2q when p = 2 and at most q if p is an odd prime. In this paper we lower these exponent bounds when q ≠ p by showing that a difference set cannot exist for the bounding exponent values of 2q and q. Thus if there exists an abelian (96, ...