There are many optimization problems in physics, chemistry, finance, computer science, engineering and operations research for which the analytical expressions of the objective and/or the constraints are unavailable. These are black-box problems where the derivative information are often not available or too expensive to approximate numerically. When the derivative information is absent, it becomes challenging to optimize and guarantee optimality of the solution. The objective of this Ph.D. work is to propose methods and algorithms to address some of the challenges of blackbox optimization (BBO). A top-down approach is taken by first addressing an easier class of black-box and then the difficulty and complexity of the problems is gradually ...