Graph classification is a difficult task because finding a good feature representation for graphs is challenging. Existing methods use topological metrics or local subgraphs as features, but the time complexity for finding discriminatory subgraphs or computing some of the crucial topological metrics (such as diameter and shortest path) is high, so existing methods do not scale well when the graphs to be classified are large. Another issue of graph classification is that the number of distinct graphs for each class that are available for training a classification model is generally limited. Such scarcity of graph data resources yields models that have much fewer instances than the model parameters, which leads to poor classification performa...