Code smells are symptoms of poor design and implementation choices. Previous studies empirically assessed the impact of smells on code quality and clearly indicate their negative impact on maintainability, including a higher bug-proneness of components affected by code smells. In this paper, we capture previous findings on bug-proneness to build a specialized bug prediction model for smelly classes. Specifically, we evaluate the contribution of a measure of the severity of code smells (i.e., code smell intensity) by adding it to existing bug prediction models based on both product and process metrics, and comparing the results of the new model against the baseline models. Results indicate that the accuracy of a bug prediction model increase...