In this brief announcement, we propose a protocol-agnostic approach to improve the design of primary-backup consensus protocols. At the core of our approach is a novel wait-free design of running several instances of the underlying consensus protocol in parallel. To yield a high-performance parallelized design, we present coordination-free techniques to order operations across parallel instances, deal with instance failures, and assign clients to specific instances. Consequently, the design we present is able to reduce the load on individual instances and primaries, while also reducing the adverse effects of any malicious replicas. Our design is fine-tuned such that the instances coordinated by non-faulty replicas are wait-free: they can co...