© 2018 Elsevier Inc. Change point detection in social networks is an important element in developing the understanding of dynamic systems. This complex and growing area of research has no clear guidelines on what methods to use or in which circumstances. This paper critically discusses several possible network metrics to be used for a change point detection problem and conducts an experimental, comparative analysis using the Enron and MIT networks. Bayesian change point detection analysis is conducted on different global graph metrics (Size, Density, Average Clustering Coefficient, Average Shortest Path) as well as metrics derived from the Hierarchical and Block models (Entropy, Edge Probability, No. of Communities, Hierarchy Level Membersh...