© 2017 ACM. Many real applications in real-time news stream advertising call for efficient processing of long queries against short text. In such applications, dynamic news feeds are regarded as queries to match against an advertisement (ad) database for retrieving the k most relevant ads. The existing approaches to keyword retrieval cannot work well in this search scenario when queries are triggered at a very high frequency. To address the problem, we introduce new techniques to significantly improve search performance. First, we devise a two-level partitioning for tight upper bound estimation and a lazy evaluation scheme to delay full evaluation of unpromising candidates, which can bring three to four times performance boosting in a datab...