Random forests are one type of the most effective ensemble learning methods. In spite of their sound empirical performance, the study on their theoretical properties has been left far behind. Recently, several random forests variants with nice theoretical basis have been proposed, but they all suffer from poor empirical performance. In this paper, we propose a Bernoulli random forests model (BRF), which intends to close the gap between the theoretical consistency and the empirical soundness of random forests classification. Compared to Breiman's original random forests, BRF makes two simplifications in tree construction by using two independent Bernoulli distributions. The first Bernoulli distribution is used to control the selection of can...