© 2016 IEEE. Today, modern databases with 'Big Dimensionality' are experiencing a growing trend. Existing approaches that require the calculations of pairwise feature correlations in their algorithmic designs have scored miserably on such databases, since computing the full correlation matrix (i.e., square of dimensionality in size) is computationally very intensive (i.e., million features would translate to trillion correlations). This poses a notable challenge that has received much lesser attention in the field of machine learning and data mining research. Thus, this paper presents a study to fill in this gap. Our findings on several established databases with big dimensionality across a wide spectrum of domains have indicated that an ex...