How learning disposition data can help us translating learning feedback from a learning analytics application into actionable learning interventions, is the main focus of this empirical study. It extends previous work (Tempelaar, Rienties, & Giesbers, 2015), where the focus was on deriving timely prediction models in a data rich context, encompassing trace data from learning management systems, formative assessment data, e-tutorial trace data as well as learning dispositions. In this same educational context, the current study investigates how the application of cluster analysis based on e-tutorial trace data allows student profiling into different at-risk groups, and how these at-risk groups can be characterized with the help of learni...