The properties of a minimax piecewise smooth solution of the Hamilton–Jacobi–Bellman equation are studied. It is known the Rankine–Hugoniot conditions are necessary and sufficient conditions for the points of nondifferentiability (singularity) of the minimax solution. We generalize this condition and describe the dimension of smooth manifolds contained in the singular set of the piecewise smooth solution in terms of state characteristics that come to this set. New structural properties of the singular set are obtained in the case where the Hamiltonian depends only on the impulse variable
We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensiona...
We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensional man...
Orientador: Marco Antonio TeixeiraTese (doutorado) - Universidade Estadual de Campinas, Instituto d...
The properties of a minimax piecewise smooth solution of the Hamilton–Jacobi–Bellman equation are st...
The properties of a minimax piecewise smooth solution of the Hamilton–Jacobi–Bellman equation are st...
Properties of a minimax piecewise smooth solution of the Hamilton-Jacobi-Bellman equation are consid...
AbstractWe study the set of points of nondifferentiability, called the singular set, of the value fu...
Minimax solutions are weak solutions to Cauchy problems involving Hamilton--Jacobi equations, constr...
We address the topology of the set of singularities of a solution to a Hamilton–Jacobi equation. For...
Prix ARCONATI-VISCONTI sciences 2005 de la Chancellerie des Universités de ParisThis Thesis is based...
Boundary-value problems for first order PDEs are locally considered, when the classical sufficient c...
AbstractThis paper presents a minimax method which gives existence and multiplicity results for time...
This paper studies the structure of the singular set (points of nondifferentiability) of viscosity ...
早稲田大学理学博士制度:新 ; 文部省報告番号:甲804号 ; 学位の種類:理学博士 ; 授与年月日:1989-11-16 ; 早大学位記番号:新1548 ; 理工学図書館請求番号:1321thesi
Given the supremal functional E∞(u,Ω′)=esssupΩ′H(⋅,Du){E_{\infty}(u,\Omega^{\prime})=\operatorn...
We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensiona...
We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensional man...
Orientador: Marco Antonio TeixeiraTese (doutorado) - Universidade Estadual de Campinas, Instituto d...
The properties of a minimax piecewise smooth solution of the Hamilton–Jacobi–Bellman equation are st...
The properties of a minimax piecewise smooth solution of the Hamilton–Jacobi–Bellman equation are st...
Properties of a minimax piecewise smooth solution of the Hamilton-Jacobi-Bellman equation are consid...
AbstractWe study the set of points of nondifferentiability, called the singular set, of the value fu...
Minimax solutions are weak solutions to Cauchy problems involving Hamilton--Jacobi equations, constr...
We address the topology of the set of singularities of a solution to a Hamilton–Jacobi equation. For...
Prix ARCONATI-VISCONTI sciences 2005 de la Chancellerie des Universités de ParisThis Thesis is based...
Boundary-value problems for first order PDEs are locally considered, when the classical sufficient c...
AbstractThis paper presents a minimax method which gives existence and multiplicity results for time...
This paper studies the structure of the singular set (points of nondifferentiability) of viscosity ...
早稲田大学理学博士制度:新 ; 文部省報告番号:甲804号 ; 学位の種類:理学博士 ; 授与年月日:1989-11-16 ; 早大学位記番号:新1548 ; 理工学図書館請求番号:1321thesi
Given the supremal functional E∞(u,Ω′)=esssupΩ′H(⋅,Du){E_{\infty}(u,\Omega^{\prime})=\operatorn...
We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensiona...
We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensional man...
Orientador: Marco Antonio TeixeiraTese (doutorado) - Universidade Estadual de Campinas, Instituto d...