Approximate marginal Bayesian computation and inference are developed for neural network models. The marginal considerations include determination of approximate Bayes factors for model choice about the number of nonlinear sigmoid terms, approximate predictive density computation for a future observable and determination of approximate Bayes estimates for the nonlinear regression function. Standard conjugate analysis applied to the linear parameters leads to an explicit posterior on the nonlinear parameters. Further marginalisation is performed using Laplace approximations. The choice of prior and the use of an alternative sigmoid lead to posterior invariance in the nonlinear parameter which is discussed in connection with the lack of sigmo...