El problema del desequilibrio de clases en el aprendizaje automático, se presenta cuando el conjunto de entrenamiento subyacente está compuesto por un número desigual de muestras para cada clase, lo que ocasiona que datos de algunas clases dominen claramente. Aparentemente, la mayoría de los modelos clasificadores aprenden a clasificar dichos conjuntos de datos; sin embargo, presentan un rendimiento de generalización deficiente debido a un fuerte sesgo hacia las clases mayoritarias. En este artículo, se presenta un estudio sistemático dirigido a comprender como afecta el problema del desequilibrio de clases al rendimiento de una red neuronal convolucional entrenada para una tarea de clasificación de imágenes, y se presenta una metodología p...
Class-imbalanced datasets are common across different domains such as health, banking, security and ...
This research provides an overview on how training Convolutional Neural Networks (CNNs) on imbalance...
Many machine/deep-learning models have been introduced to perform data classification. • An open qu...
Image classification is the process of assigning an image one or multiple tags that describe its con...
In this study, we systematically investigate the impact of class imbalance on classification perform...
Abstract. The latest research in neural networks demonstrates that the class imbalance problem is a ...
En diversos problemas de reconocimiento de patrones, se ha observado que el desequilibrio de clases ...
Imbalanced class is one of the trials in classifying materials of big data. Data disparity produces ...
Imbalanced data is a major problem in machine learning classification, since predictive performance ...
Proceeding of: Artificial Neural Networks - ICANN 2010. 20th International Conference, Tessaloniki, ...
This project consists in three main tasks: first, an analysis of the current state of the art in tec...
Any computer vision application development starts off by acquiring images and data, then preprocess...
Máster en Image Processing and Computer VisionIn this Master’s Thesis, we pretend to find a measure ...
Learning from imbalanced data has drawn growing attentions nowadays in the machine learning and data...
Imbalanced Data (ID) is a problem that deters Machine Learning (ML) models from achieving satisfacto...
Class-imbalanced datasets are common across different domains such as health, banking, security and ...
This research provides an overview on how training Convolutional Neural Networks (CNNs) on imbalance...
Many machine/deep-learning models have been introduced to perform data classification. • An open qu...
Image classification is the process of assigning an image one or multiple tags that describe its con...
In this study, we systematically investigate the impact of class imbalance on classification perform...
Abstract. The latest research in neural networks demonstrates that the class imbalance problem is a ...
En diversos problemas de reconocimiento de patrones, se ha observado que el desequilibrio de clases ...
Imbalanced class is one of the trials in classifying materials of big data. Data disparity produces ...
Imbalanced data is a major problem in machine learning classification, since predictive performance ...
Proceeding of: Artificial Neural Networks - ICANN 2010. 20th International Conference, Tessaloniki, ...
This project consists in three main tasks: first, an analysis of the current state of the art in tec...
Any computer vision application development starts off by acquiring images and data, then preprocess...
Máster en Image Processing and Computer VisionIn this Master’s Thesis, we pretend to find a measure ...
Learning from imbalanced data has drawn growing attentions nowadays in the machine learning and data...
Imbalanced Data (ID) is a problem that deters Machine Learning (ML) models from achieving satisfacto...
Class-imbalanced datasets are common across different domains such as health, banking, security and ...
This research provides an overview on how training Convolutional Neural Networks (CNNs) on imbalance...
Many machine/deep-learning models have been introduced to perform data classification. • An open qu...