用完全初等的方法即Pell方程、递推序列和指数的一些简单性质证明了丢番图方程x2+7=2n仅有五组正整解. In this paper, give an elementary solution of the Diophantine equation by using simple properties of Pell'equation, recurrence sequence, minimal non-negative residue and index.广西民族大学学报(自然科学版),2015,02:64-6
U ovom završnom radu proučavat ćemo diofantske jednadžbe drugog stupnja. Definirat ćemo Pitagorinu ...
Penelitian ini membahas tentang penentuan solusi persamaan Diophantine non-linier 7 1 7z dengan x,...
We consider the equation (1) ax 2 by2 c 0, with a,b * and c *. It is a generalization of the Pell’s...
summary:Let $\mathbb {Z}$, $ \mathbb {N}$ be the sets of all integers and positive integers, respect...
AbstractRamanujan′s equation x2 + 7 = 2n + 2 is generalized in a natural way to the form B2n + 7A2n ...
Diophantine equation is an equation in which solutions to it are from some predetermined classes and...
summary:In this paper, we find all solutions of the Diophantine equation $x^2+2^\alpha 5^\beta 17^\g...
An old problem of Ramanujan, solved rst by Nagell [11], amounts to showing that the Diophantine equa...
summary:In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an i...
Consider the system x 2 − ay 2 = b, P (x, y) = z ...
Abstract: In this note we present a method of solving this Diophantine equation, method which is dif...
Let \(q\) be an odd prime such that \(q^t+1=2c^s\), where \(c,t\) are positive integers and \(s=1,2\...
Consider the system x2 − ay2 = b, P (x, y) = z2, where P is a given integer polynomial. Historically...
In the first chapter we have given some definations, theorems, lemmas on Elementary Number Theory. T...
早稲田大学博士(理学)制度:新 ; 文部省報告番号:甲961号 ; 学位の種類:博士(理学) ; 授与年月日:1993-03-04 ; 早大学位記番号:新1907 ; 理工学図書館請求番号:1645t...
U ovom završnom radu proučavat ćemo diofantske jednadžbe drugog stupnja. Definirat ćemo Pitagorinu ...
Penelitian ini membahas tentang penentuan solusi persamaan Diophantine non-linier 7 1 7z dengan x,...
We consider the equation (1) ax 2 by2 c 0, with a,b * and c *. It is a generalization of the Pell’s...
summary:Let $\mathbb {Z}$, $ \mathbb {N}$ be the sets of all integers and positive integers, respect...
AbstractRamanujan′s equation x2 + 7 = 2n + 2 is generalized in a natural way to the form B2n + 7A2n ...
Diophantine equation is an equation in which solutions to it are from some predetermined classes and...
summary:In this paper, we find all solutions of the Diophantine equation $x^2+2^\alpha 5^\beta 17^\g...
An old problem of Ramanujan, solved rst by Nagell [11], amounts to showing that the Diophantine equa...
summary:In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an i...
Consider the system x 2 − ay 2 = b, P (x, y) = z ...
Abstract: In this note we present a method of solving this Diophantine equation, method which is dif...
Let \(q\) be an odd prime such that \(q^t+1=2c^s\), where \(c,t\) are positive integers and \(s=1,2\...
Consider the system x2 − ay2 = b, P (x, y) = z2, where P is a given integer polynomial. Historically...
In the first chapter we have given some definations, theorems, lemmas on Elementary Number Theory. T...
早稲田大学博士(理学)制度:新 ; 文部省報告番号:甲961号 ; 学位の種類:博士(理学) ; 授与年月日:1993-03-04 ; 早大学位記番号:新1907 ; 理工学図書館請求番号:1645t...
U ovom završnom radu proučavat ćemo diofantske jednadžbe drugog stupnja. Definirat ćemo Pitagorinu ...
Penelitian ini membahas tentang penentuan solusi persamaan Diophantine non-linier 7 1 7z dengan x,...
We consider the equation (1) ax 2 by2 c 0, with a,b * and c *. It is a generalization of the Pell’s...