A truly-mixed approach for the analysis of viscoelastic structures and continua is presented. An additive decomposition of the stress state into a viscoelastic part and a purely elastic one is introduced along with an Hellinger-Reissner variational principle wherein the stress represents the main variable of the formulation whereas the kinematic descriptor (that in the case at hand is the velocity field) acts as Lagrange multiplier. The resulting problem is a Differential Algebraic Equation (DAE) because of the need to introduce static Lagrange multipliers to comply with the Cauchy boundary condition on the stress. The associated eigenvalue problem is known in the literature as constrained eigenvalue problem and poses several difficulties f...