The primary focus of this dissertation is the design, analysis, and implementation of numerical methods to enhance Sequential Quadratic Optimization (SQO) methods for solving nonlinear constrained optimization problems. These enhancements address issues that challenge the practical limitations of SQO methods. The first part of this dissertation presents a penalty SQO algorithm for nonlinear constrained optimization. The method attains all of the strong global and fast local convergence guarantees of classical SQO methods, but has the important additional feature that fast local convergence is guaranteed when the algorithm is employed to solve infeasible instances. A two-phase strategy, carefully constructed parameter updates, and a line sea...