Management of the portfolios containing low liquidity assets is a tedious problem. The buyer proposes the price that can differ greatly from the paper value estimated by the seller, so the seller can not liquidate his portfolio instantly and waits for a more favorable offer. To minimize losses and move the theory towards practical needs onecan take into account the time lag of the liquidation of an illiquid asset. Working in the Merton’s optimal consumption framework with continuous time we consider an optimization problem for a portfolio with an illiquid, a risky and a risk-free asset. While a standard Black-Scholes market describes the liquid part of the investment the illiquid asset is sold at an exogenous random moment with prescribed l...