A data stream is a continuously arriving sequence of data and clustering data streams requires additional considerations to traditional clustering. A stream is potentially unbounded, data points arrive on-line and each data point can be examined only once. This imposes limitations on available memory and processing time. Furthermore, streams can be noisy and the number of clusters in the data and their statistical properties can change over time. This paper presents an on-line, bio-inspired approach to clustering dynamic data streams. The proposed Ant-Colony Stream Clustering (ACSC) algorithm is a density based clustering algorithm, whereby clusters are identified as high-density areas of the feature space separated by low-density areas. AC...