The Fatou-Julia iteration theory of rational functions has been extended to uniformly quasiregular mappings in higher dimension by various authors, and recently some results of Fatou-Julia type have also been obtained for non-uniformly quasiregular maps. The purpose of this paper is to extend the iteration theory of transcendental entire functions to the quasiregular setting. As no examples of uniformly quasiregular maps of transcendental type are known, we work without the assumption of uniform quasiregularity. Here the Julia set is defined as the set of all points such that the complement of the forward orbit of any neighbourhood has capacity zero. It is shown that for maps which are not of polynomial type, the Julia set is non-empty and ...